Popular Posts

Blogger templates

Blogger news

Blogroll

About

Añadir Temas

Contador de Visitas

Con la tecnología de Blogger.

Datos personales

miércoles, 13 de mayo de 2015

Movimiento Parabólico/Tiro Parabólico

Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme.
En realidad, cuando se habla de cuerpos que se mueven en un campo gravitatorio central (como el de La Tierra), el movimiento es elíptico. En la superficie de la Tierra, ese movimiento es tan parecido a una parábola que perfectamente podemos calcular su trayectoria usando la ecuación matemática de una parábola. La ecuación de una elipse es bastante más compleja. Al lanzar una piedra al aire, la piedra intenta realizar una elipse en uno de cuyos focos está el centro de la Tierra. Al realizar esta elipse inmediatamente choca con el suelo y la piedra se para, pero su trayectoria es en realidad un "trozo" de elipse. Es cierto que ese "trozo" de elipse es casi idéntico a un "trozo" de parábola. Por ello utilizamos la ecuación de una parábola y lo llamamos "tiro parabólico". Si nos alejamos de la superficie de la Tierra sí tendríamos que utilizar una elipse(como en el caso de los satélites artificiales).
El movimiento parabólico puede ser analizado como la composición de dos movimientos rectilíneos: un movimiento rectilíneo uniforme horizontal y un movimiento rectilíneo uniformemente acelerado vertical.
El tiro parabólico tiene las siguientes características:
Tir parabòlic.png
  • Conociendo la velocidad de salida (inicial), el ángulo de inclinación inicial y la diferencia de alturas (entre salida y llegada) se conocerá toda la trayectoria.
  • Los ángulos de salida y llegada son iguales.
  • La mayor distancia cubierta o alcance se logra con ángulos de salida de 45º.
  • Para lograr la mayor distancia fijado el ángulo el factor más importante es la velocidad.Se puede analizar el movimiento en vertical independientemente del horizontal.

Casting obliquely.gif

Tipos de movimiento parabólico




El movimiento parabólico completo se puede considerar como la composición de un avance horizontal rectilíneo uniforme y un lanzamiento vertical hacia arriba, que es un movimiento rectilíneo uniformemente acelerado hacia abajo (MRUA) por la acción de la gravedad.Movimiento parabólico (completo)
En condiciones ideales de resistencia al avance nulo y campo gravitatorio uniforme, lo anterior implica que:
  1. Un cuerpo que se deja caer libremente y otro que es lanzado horizontalmente desde la misma altura tardan lo mismo en llegar al suelo.
  2. La independencia de la masa en la caída libre y el lanzamiento vertical es igual de válida en los movimientos parabólicos.
  3. Un cuerpo lanzado verticalmente hacia arriba y otro parabólicamente completo que alcance la misma altura tarda lo mismo en caer.
  4. El tiempo que tarda en alcanzar su altura máxima es el mismo tiempo que tarda en recorrer la mitad de su distancia horizontal, es decir, el tiempo total necesario para alcanzar la altura máxima y regresar al suelo es el mismo para el total de recorrido horizontal.

martes, 12 de mayo de 2015

PRIMERA LEY DE NEWTON


Esta indica que si un cuerpo dado no está sujeto a la acción de fuerzas, mantendrá sin cambio su velocidad (en magnitud y dirección). Esta propuesta se le debe originalmente a Galileo, pero Newton la adoptó como la primera de sus leyes para describir el movimiento de cuerpos.
A primera vista, esta ley parece ser menos compleja que las otras dos, pues carece de una expresión matemática y para colmo parece un corolario de su segunda ley (F = m a), pues la aceleración de un objeto es nula (o sea, su velocidad es constante) cuando no hay fuerzas actuando sobre él.El sentido original de la primera ley de Newton (conocida como Ley de la inercia), es que no se requieren fuerzas para mantener sin variación el movimiento de los cuerpos, sino solamente para cambiar la magnitud o la dirección de su velocidad. En otras palabras, no es necesario que haya una fuerza para que un cuerpo se encuentre en movimiento, sino únicamente para que cambie el estado del movimiento en sí. Este enunciado resultó fundamental cuando Galileo y Newton lo propusieron, pues según la percepción antigua y contradictoria a este principio, sustentada sobre todo un famoso libro de Aristóteles titulado precisamente Física, se requiere un "agente activo", o sea una fuerza, para mantener en movimiento un cuerpo, pues su "estado natural" es el de reposo.




Inercia

La inercia es la propiedad que tienen los cuerpos de permaneces en su estado de reposo o movimiento, mientras no se le aplique sobre ellos alguna fuerza, o la resistencia que opone la matera al modificar su estado de reposo o movimiento. Como consecuencia un cuerpo conserva su estado de reposo o movimiento rectilíneo uniforme si no hay una fuerza actuando sobre él. De ser así el cuerpo dejara su estado original y tomara uno nuevo.En física se dice que un sistema tiene más inercia cuando resulta más difícil lograr un cambio en estado físico del mismo.
Los dos usos más frecuentes en física son la inercia mecánica y la inercia térmica.La primera de ellas en mecánica y es una medida de dificultad para cambiar el estado de movimiento o reposo de un cuerpo. La inercia mecánica depende de la cantidad de masa y del tensor de inercia.La inercia térmica mide la dificultad con la que un cuerpo cambia su temperatura al estar en contacto con otros cuerpos o ser calentado. La inercia térmica depende de la cantidad de masa y de la capacidad calorífica.Las llamadas fuerzas de inercia son fuerzas ficticias o aparentes que un observador percibe en un sistema de referencia no-inercial


Caída Libre


En física, se denomina caída libre al movimiento de un cuerpo bajo la acción exclusiva de un campo gravitatorio. Esta definición formal excluye a todas las caídas reales influenciadas en mayor o menor medida por la resistencia aerodinámica del aire, así como a cualquier otra que tenga lugar en el seno de unfluido; sin embargo, es frecuente también referirse coloquialmente a éstas como caídas libres, aunque los efectos de la viscosidad del medio no sean por lo general despreciables.

El concepto es aplicable también a objetos en movimiento vertical ascendente sometidos a la acción desaceleradora de la gravedad, como un disparo vertical; o a cualquier objeto (satélites naturales o artificiales, planetas, etc.) en órbita alrededor de un cuerpo celeste. Otros sucesos referidos también como caída libre lo constituyen las trayectorias geodésicas en el espacio-tiempo descritas en la teoría de la relatividad general.




La caída libre como sistema de referencia

Un sistema de referencia ligado a un cuerpo en caída libre puede considerarse inercial o no inercial en función del marco teórico que se esté usando.

En la física clásica, la fuerza gravitatoria que se ejerce sobre una masa es proporcional a la intensidad del campo gravitatorio en la posición espacial donde se encuentre dicha masa. La constante de proporcionalidad es precisamente el valor de la masa inercial del cuerpo, tal y como establece el principio de equivalencia. En la física relativista, la gravedad es el efecto que produce sobre las trayectorias de los cuerpos la curvatura del espacio-tiempo; en este caso, la gravedad no es una fuerza, sino una geodésica. Por tanto, desde el punto de vista de la física clásica, un sistema de referencia en caída libre es un sistema acelerado por la fuerza de la gravedad y, como tal, es no inercial. Por el contrario, desde el punto de vista de la física relativista, el mismo sistema de referencia es inercial, pues aunque está acelerado en el espacio, no está acelerado en el espacio-tiempo. La diferencia radica en la propia definición de los conceptos geométricos y cinemáticos, que para cada marco teórico son completamente diferentes.Caída libre ideal
Véase también: Ecuaciones para un cuerpo en caída libre


En la caída libre ideal, se desprecia la resistencia aerodinámica que presenta el aire al movimiento del cuerpo, analizando lo que pasaría en el vacío. En esas condiciones, la aceleración que adquiriría el cuerpo sería debida exclusivamente a la gravedad, siendo independiente de su masa; por ejemplo, si dejáramos caer una bala de cañón y una pluma en el vacío, ambos adquirirían la misma aceleración, , que es la aceleración de la gravedad
Ecuación del movimiento

De acuerdo a la segunda ley de Newton, la fuerza que actúa sobre un cuerpo es igual al producto de su masa por la aceleración que adquiere. En caída libre sólo intervienen el peso (vertical, hacia abajo) y el rozamiento aerodinámico en la misma dirección, y sentido opuesto a la velocidad. Dentro de un campo gravitatorio aproximadamente constante, la ecuación del movimiento de caída libre es:




La aceleración de la gravedad lleva signo negativo porque se toma el eje vertical como positivo hacia arriba.






lunes, 11 de mayo de 2015

Vector

Para otros usos de este término, véase Vector (desambiguación).
Este artículo trata sobre el concepto físico de vector. Para el tratamiento matemático formal, véase Espacio vectorial.

En Matemáticas se define un vector como un elemento de un espacio vectorial. Esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación. En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo. Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano o en el espacio .En física, un vector (también llamado vector euclidiano o vector geométrico) es una magnitud física definida por un punto del espacio donde se mide dicha magnitud, además de un módulo (o longitud), su dirección (u orientación) y su sentido (que distingue el origen del extremo).

Algunos ejemplos de magnitudes físicas que son magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.

Conceptos fundamentales

Esta sección explica los aspectos básicos, la necesidad de los vectores para representar ciertas magnitudes físicas, los componentes de un vector, la notación de los mismos, etc.

Definición Componentes de un vector.

Se llama vector de dimensión n \, a una tupla de n \, números reales (que se llaman componentes del vector). El conjunto de todos los vectores dedimensión n \, se representa como \mathbb{R}^n (formado mediante el producto cartesiano).
Así, un vector \scriptstyle v perteneciente a un espacio \mathbb{R}^n se representa como:
v = (a_1, a_2, a_3, \dots, a_n), donde v \in \mathbb{R}^n
Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional \mathbb{R}^3 ó bidimensional \mathbb{R}^2).
Un vector fijo del plano euclídeo es un segmento orientado, en el que hay que distinguir tres características:1 2 3
  • módulo: la longitud del segmento
  • dirección: la orientación de la recta
  • sentido: indica cual es el origen y cual es el extremo final de la recta
En inglés, la palabra "direction" indica tanto la dirección como el sentido del vector, con lo que se define el vector con solo dos características: módulo y dirección.4
Los vectores fijos del plano se denotan con dos letras mayúsculas, por ejemplo AB, que indican su origen y extremo respectivamente.
\overrightarrow{AB} = (x_B - x_A, y_B - y_A) \,

Características de un vector

Un vector se puede definir por sus coordenadas, si el vector esta en el plano xy, se representa:

   \vec{V} =
   \boldsymbol{V} =
   (V_x, V_y)
siendo sus coordenadas:

   V_x, \; V_y
Siendo el vector la suma vectorial de sus coordenadas:

   \vec{V} =
   \vec{V_x} + \vec{V_y}
Si un vector es de tres dimensiones reales, representado sobre los ejes x, y, z, se puede representar:

   \vec{V} =
   \boldsymbol{V} =
   (V_x, V_y, V_z)
siendo sus coordenadas:

   V_x, \; V_y, \; V_z

Si representamos el vector gráficamente podemos diferenciar la recta soporte o dirección, sobre la que se traza el vector.
Vector 02.svg







El módulo o amplitud con una longitud proporcional al valor del vector.
Vector 03.svg

El sentido, indicado por la punta de flecha, siendo uno de los dos posibles sobre la recta soporte.
Vector 04.svg

El punto de aplicación que corresponde al lugar geométrico al cual corresponde la característica vectorial representado por el vector.
Vector 05.svg

El nombre o denominación es la letra, signo o secuencia de signos que define al vector.
Vector 06.svg

Por lo tanto en un vector podemos diferenciar:
 Vector 07.svg